1 |
rakinar2 |
577 |
/** |
2 |
|
|
* This file is part of SudoBot. |
3 |
|
|
* |
4 |
|
|
* Copyright (C) 2021-2024 OSN Developers. |
5 |
|
|
* |
6 |
|
|
* SudoBot is free software; you can redistribute it and/or modify it |
7 |
|
|
* under the terms of the GNU Affero General Public License as published by |
8 |
|
|
* the Free Software Foundation, either version 3 of the License, or |
9 |
|
|
* (at your option) any later version. |
10 |
|
|
* |
11 |
|
|
* SudoBot is distributed in the hope that it will be useful, but |
12 |
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
|
|
* GNU Affero General Public License for more details. |
15 |
|
|
* |
16 |
|
|
* You should have received a copy of the GNU Affero General Public License |
17 |
|
|
* along with SudoBot. If not, see <https://www.gnu.org/licenses/>. |
18 |
|
|
*/ |
19 |
|
|
|
20 |
|
|
import type { Tensor3D } from "@tensorflow/tfjs-node"; |
21 |
|
|
import type { NSFWJS } from "nsfwjs"; |
22 |
|
|
import Tesseract, { createWorker } from "tesseract.js"; |
23 |
|
|
import Service from "../core/Service"; |
24 |
|
|
import { log, logInfo } from "../utils/Logger"; |
25 |
|
|
import { developmentMode } from "../utils/utils"; |
26 |
|
|
|
27 |
|
|
export const name = "imageRecognitionService"; |
28 |
|
|
|
29 |
|
|
export default class ImageRecognitionService extends Service { |
30 |
|
|
protected worker: Tesseract.Worker | null = null; |
31 |
|
|
protected nsfwJsModel: NSFWJS | null = null; |
32 |
|
|
protected timeout: Timer | null = null; |
33 |
|
|
protected tensorFlow: typeof import("@tensorflow/tfjs-node") | null = null; |
34 |
|
|
protected nsfwJs: typeof import("nsfwjs") | null = null; |
35 |
|
|
|
36 |
|
|
async boot() { |
37 |
|
|
for (const guild in this.client.configManager.config) { |
38 |
|
|
if ( |
39 |
|
|
this.client.configManager.config[guild]?.message_rules?.rules.some( |
40 |
|
|
rule => rule.type === "EXPERIMENTAL_nsfw_filter" |
41 |
|
|
) |
42 |
|
|
) { |
43 |
|
|
logInfo("Loading NSFWJS model for NSFW image recognition"); |
44 |
|
|
|
45 |
|
|
this.tensorFlow = await import("@tensorflow/tfjs-node"); |
46 |
|
|
|
47 |
|
|
if (!developmentMode()) { |
48 |
|
|
this.tensorFlow.enableProdMode(); |
49 |
|
|
} |
50 |
|
|
|
51 |
|
|
this.nsfwJs = await import("nsfwjs"); |
52 |
|
|
this.nsfwJsModel = await this.nsfwJs.load( |
53 |
|
|
process.env.NSFWJS_MODEL_URL || undefined, |
54 |
|
|
process.env.NSFWJS_MODEL_IMAGE_SIZE |
55 |
|
|
? { |
56 |
|
|
size: parseInt(process.env.NSFWJS_MODEL_IMAGE_SIZE) |
57 |
|
|
} |
58 |
|
|
: undefined |
59 |
|
|
); |
60 |
|
|
|
61 |
|
|
break; |
62 |
|
|
} |
63 |
|
|
} |
64 |
|
|
} |
65 |
|
|
|
66 |
|
|
protected async createWorkerIfNeeded() { |
67 |
|
|
if (!this.worker && !this.timeout) { |
68 |
|
|
log("Spawning new tesseract worker for image recognition"); |
69 |
|
|
this.worker = await createWorker("eng"); |
70 |
|
|
this.setTimeout(); |
71 |
|
|
} else if (this.worker && this.timeout) { |
72 |
|
|
log("Using existing tesseract worker for image recognition"); |
73 |
|
|
clearTimeout(this.timeout); |
74 |
|
|
this.setTimeout(); |
75 |
|
|
} |
76 |
|
|
} |
77 |
|
|
|
78 |
|
|
protected setTimeout() { |
79 |
|
|
this.timeout = setTimeout(() => { |
80 |
|
|
log("Terminating existing tesseract worker due to inactivity"); |
81 |
|
|
this.worker?.terminate(); |
82 |
|
|
this.timeout = null; |
83 |
|
|
}, 60_000); |
84 |
|
|
} |
85 |
|
|
|
86 |
|
|
async recognize(image: Tesseract.ImageLike) { |
87 |
|
|
await this.createWorkerIfNeeded(); |
88 |
|
|
return this.worker!.recognize(image); |
89 |
|
|
} |
90 |
|
|
|
91 |
|
|
async detectNSFW(image: Uint8Array | Buffer) { |
92 |
|
|
if (!this.tensorFlow) { |
93 |
|
|
throw new Error("Tensorflow is not loaded"); |
94 |
|
|
} |
95 |
|
|
|
96 |
|
|
const tensor = this.tensorFlow.node.decodeImage(image, 3, undefined, false); |
97 |
|
|
const predictions = await this.nsfwJsModel!.classify(tensor as Tensor3D); |
98 |
|
|
const result: Record<string, number> = {}; |
99 |
|
|
|
100 |
|
|
for (const prediction of predictions) { |
101 |
|
|
result[prediction.className.toLowerCase()] = prediction.probability; |
102 |
|
|
} |
103 |
|
|
|
104 |
|
|
tensor.dispose(); |
105 |
|
|
return result; |
106 |
|
|
} |
107 |
|
|
} |